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Let y
C(.) denote a random process whose bandwidth , ~1oosely

speaking, goes to as C -
~ 0. Consider the family of differential

equations ~~ = g(xC,y
E) + f(xC ,yC)/cr(c), where ct t:C) 0 as ~ 0.

~~~~~~~~~ _ The question of interest is: does the sequence {x
C(.)} converge in

~~~~_ some sense and if so which , if any, ordinary or It~ differential

~~ equation does it satisfy? Normally, the limit is taken in the sense
of weak convergence. The problem is of great practical importance ,

H _i for such questions arise in many practical situations arising in many
L.L.. fields. Often the limiting equation is nice and can be treated much

more easily than can the x6(). In any case , in practice approxima-

tions to properties of the x C(.) are usually sought in terms of c

and some limit. To illustrate these points , as well as a related

stability problem , we give a practical example which arises in the

theory of adaptive arrays of antennas. 4
~~~The topic of convergence has seen much work , starting with the I

fundamental papers of Wong and Zakai , and followed by others , in-

cluding Khazminskii , Papanicolaou and Kohler , etc. From a non-

probabilistic point of view , it has been dealt with by McShane and
Sussmann . In this paper , we d i u ~~~a ather g neral and efficient
method of getting the correct limit�~~ e i ea ~xp1oits some general

semigroup approximation results of Kurtz , and often not only gets

better results than those obtained by preceding methods , but is also
easier to use. DISTRIBUTION STATEMENT A
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1. Introduction

Let yt(.) denote a stationary random process whose “bandwidth”
goes to ~ as £ -

~ 0, and define the Rr~va1ued process xC(.) by
the O.D.E.

. E  £ £ C C( 1.1 )  x = g(x ,y ) + f (x ,y )/cz(c), x0 
= x(0) given ,

where a(c) -~ 0 as £ -
~ 0, and Ef(x ,y C

) = 0 for each x. In this

paper , we address the question: as. C + 0, what is the limit of

in particular , does it satisf y an ordinary or Itô stochastic

differential equation , and if so , what is that equation. The question

arises frequently in app lications in many areas. Often yC(.) is a
rather arbitrary process and yet the limit is a nice Markov process
satisf ying, say, an it6 equation . Then many functionals of

can be approximated by functionals of the limit and the parameter c,

for small C . In app lications , this is often done , either explicitly

or implicitly. In Sections 2 and 6, one particular important app lica-

tion will be discussed.
The problem has been around for some time and is a crucial

aspect of the problem of modelling the processes which arise in

practice by mathematically tractable processes. Perhaps , the first

mathematical treatment was given by Wong and Zakai [1), [21 who dealt

with equations of the form
C C £

(1.2) x = g(x ) + f(x )y

where y
C(.) was (more or less) the derivative of a polygonal

approximation YC(.) to a Wiener process , and YC(.) converged to

that process as C went to zero . Much subsequent was done on the

following form . Let ct (c) = c, suppose that y() is a stationary

bounded process and p () a measurable function which satisfy the

strong mixing condition (1.3).

(l.3a) I p~~2(s)d s <

(l.3b) JP{B IA} - P{B)I < p (t)

for each t,r and each B £ 
~~
(y5, s > I + t) and A C~~(y5, s < t).

Let yC(t) y(t/c2). Motivation for this scaling is given in the

next subsection. (We write the values of a process y(~) as either

y(t) or >‘~~~ 
depending on notational convenience.)

Under (1.3) and other conditions on g and f, (1.1) was dealt

~~~~~~~~~~~~~~~~~~~~~~~~~ T- - ~~~~~~~~~~~~~~~~~~~~~~~~~



w i t h  by K h a z m i n s k i i  [3 1 , P a p a n i c o ]n o u  (5), Papanico laou and Kohier
[4 1 , Papanicolaou and Blankensh i p [6 1 and Kushner  [ 71  . The last
reference obtained perhaps the most general results (for the time
invariant case) and allowed cases where y

C(.) could contain

(approximations to) impulsive jumps , and also where y(~) is un-

bounded but the form f(x,y) = f(x)y was used.

Let C~ denote the space of real-valued functions on Rr

w h i c h  go to z ero as l x i ~~~, together with their first 1th mixed

partial derivatives , and let ~~
‘ denote the subset with compact

support. Let subscript x denote gradient , and define the operator

A on ~2 by

( 1 . 4 )  Ak( x) = 13g’(x,y 5)k~ (x)  + 
J

Ef’(x,Ys)(f’(x,Y s+t )k x(X))xdt

= V b ( .~ak(x) + ! v a ~ ~ 
a2k(x)

‘~ i~~ ’~ ~x .  2 .“ . ij~
’
~’ ax.ax .

1 1 1,3  1 .1

In references [3) - [7] , it was proved (under various conditions on

f,g,y(.)) that xC(.) converged weakly to a diffusion process x(.)

w1~ose genera tor on e 2 func tions is the operator A of (1.4).

References [41 and [6) contain a wealth of ideas on the

approximation and related problems. The methods used in (7] are

based on general seinigroup approximation methods of Kurtz [8]. They I -

.

have a number of advantages over previous methods , being somewhat

easier to use and giving better results in many cases. The method

w i l l  be described and used in Section 3.
Most pas t work has dealt with showing that x() is a good

approximation to xC(.) in some sense. Only recently (see, e.g.

[131 ) has the question of dealing with the control and stability

properties of xC(.) in terms of those of x(.) been considered.

Reference [14) deals with the reversed problem : finding x
C
(.)

which are easier to work with than x(.).

Discussion of properties of ~~C ( . )  as C + 0. As C + 0 in

(1.1) the process f(x
C
,y

C
)/ct(c) is “increasingly compressed” , hence

(loosely speaking) the bandwidth goes to ~~~. If f(x,y) were not
C C

H divided by cL(E), then the average energy in the process f(xt,yt)/~
(E)

(over any finite interval) would tend to zero as C + 0 and the f

term would play no role in the limit. To see the’ rough idea most

simp ly, let y
E(.) be scalar valued , let f(x,y) f(x)y, let R()

and S(s) denote the correlation function and spectral density of a

— 
- - - - - - - --— --‘,
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I
stationary process y(.), consider t h e  special case where

y
~

-= y(t/c2) and let gC ( .)  and S~() denote the correlation

func tion and spectral density of y
C
(.)• Then R

C
(t) = R(t/c2)/a2(C)

and

S
C

(w )  = 
J 

e1
~~
tR

C (t ) d t  = 

f 
e

1Wt R ( t / C 2
) d t/ ~~

2 ( C )  = C 2 5(E 2w )/ a 2 (C ) .

U n l e s s c z(c )  = C , th e ene r gy p er unit bandwith either blows up
-~~ c x )  or goes to zero (c/a(c) ‘

~~ 0). When a(c) = C ,

= R ( 0 ) / c 2 
+ ~~~~. If the “magni tude ” of y

C
(t)/C did not go to

as £ -
~ ~~~, then the energy per unit bandwidth would go to zero . So,

in order to get a constant energy per unit bandwidth as C + 0, we
I
t 

. need both a time compression (tic 2 scale) and an amplitude magnitica-

tion (ct(c) = C). Use of this remark will be made in the next section .

In Section 5, we illustrate the technique of [7] on an important

class of problems not explicitly treated previousl y. For each C ,

let {s~ , i > 0), denote a stationary process. Define s
C() as the

function which is equal to s~ on the interval [i ,i+l), set
= s~~tI~~ , and let s~ be “small” ; i.e., Ef(x ,s~) = 0,

var f(x ,s
~
) £ and define x (.) by

£ £ C C
(1.5) x = g(x ,~~ 

) + f (x  ,E )/c , x(0) = x0.

The exac t forms of the conditions to be used are stated in Section 5.

The form (1.5) is chosen partly to illustrate the method. That
is piecewise constant makes the calculations a little easier , bu t is
not a particularly crucial assumption . We will treat the case where

f(•,•) is linear in its second argument: f(x,s) = f(x)s.
Equation (1.5) is also important from the point of view of

app lications. Consider the scalar valued discrete parameter sequence

X f~ = + h(X,~,s~ ) where Eh(x ,s~) Cp(x) and var h(x,s~)

02 (x ) c. Then , setting q(x,s~) = h(x , s~ ) - Eh(x ,s~) yields the

discrete parameter version of (1.5):

(1.6) XI~4.l 
= + £p(X~) + q (X~ ,s~).

Let 
_C

( )  denote a piecewise linear interpolation of {X~} which

is linear in each [cn ,cn+c) and equals X~ at En. Then the slope

of jC ( )  is P(X~) + q (X~ ,sC(Cn/C))/C in (cfl ,Cn+E) . Thus , (1.5)

is a continuous parameter version of (X,~}. The limits of ic C .)
and of (x t(.)} are not necessarily the same , although in many cases

— a- .- - -- -
~~ 
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we can find g and g such that x
C

( n C )  = X~ for all £ ,n.

- 
Let us suppose that in (1.1), ~(c) = C and y t ( t )  = y(t/c2).

Equation (1.5) differs from equation (1.1) in that the  ~~(t)
essentially become small in some sense as C 0. But the scaling
is also different (less compression) , tic being used in lieu of
t/c2 . Equation (1.5) (and (1.6)) correspond to a problem where , as
C -* 0, more and more random effects affect the sys tem , but where the
indjvidual effects became smaller and smaller. Let f(x,s) = f(x)s
and write ~~(t)/c = [s C (t/c)//~J//~ , bring ing the form (1.5) into
that of (1.1) but with /E replacing C and s

C(t/c)//~ replacing

Y
E
(t) But now , as C -‘ 0, s

C
( t i C ) / / ~ might become unbounded . Owing

to this , the methods used for (1.1) (at least when y(.) was assumed
bounded) need to be modified a little for use here.

In Section 2, we discuss a currently important problem concern-

ing “adaptive ” antenna arrays , which illustrates one particular value
derived from the type of limit results with which we are concerned.
Sections 3 and 4 describe Kurtz ’s [81 interesting method for proving

tig htness and weak convergence of a sequence of not necessarily
Markov processes. Uenceforth, x C is used oni~y for the solution to
(1.5). Convergence of the finite dimensional distributions of x

E(.)
to those  of a p a r t i c u l a r  d i f f u s i o n  x ( )  is proved in Section 5.
Also , Section 5 proves tightness of (X C ( . .)). Together these results

yield that x
C(.) converges weakly to x(.). In Section 6, we

return to the antenna problem , and treat the problem of weak con-

vergence and get a moment estimate for the adapting parameters , and

discuss a related stability problem .
The use of weak convergence methods seems quite natural for our

problem . Often w .p .l results are meaningless , since usually only one

system (a fixed c) is to be studied , and we seek approximations to its

properties in terms of c and properties of the limit.

2. A Problem in Adaptive Antenna Arrays

Let n ( )  = (n1(i~~
...

~
n
~
(
~

)) denote a “wide band” comp lex
valued stochastic process. We are given an array of r antennas with

received signal plus noise v(t) s(t) + n(t) (s1(t) + n
~
(t)),

s1 (t ) and n 1(t) being complex valued. The v(t) is multiplied by

a complex valued weight w , and the object is to find the weights

which maximize the ratio of signal to noise power In the output

w ’v(t). The problem is important and of grea t current interest (see
the papers in (91 or [101 and references contained therein). The

4~
_—-

~ 
_
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signa l frequency is known , the sign a ls received by the antennas

differ only in the phase. Let * denote complex conjugate. Let

S~ = (l,exp i~ 2,. . .,exp 
~~~~ 

where 
~~~~

. is the phase of s~ (t)

relative to that of s1(t), and let S he propor tional to S0 . With

M = L~n*(t)n~~(t), the opt imum weig ht is w = ki~ S , for any constant

k > 0.
In many applications , i~i is t ime  v a r y i n g , due to deliberate

jamming attempts , or due to more natural phenomena. In fact , in

many app lications n(.) is a strong competing signal which we wish

to “tune out” and i ts  covariance may vary , depending on the par t i cu la r
use to which the system is put. We suppose (as is often the c a s e  -

e.g., in pulsed radar) that the signal power is much less than the

noise power , so that !~f Ev*(t)v’(t).
A very useful and relatively simp le mechanism for adapting the

w e i g h t s  (see , e.g. [10]) can be constructed. The relevant equation is

(M t 
= v*(t)v~~(t))

(2.1) + (GM+I)w = G0S,

where T is a scalar system time constant and G and G0 are

system gains. Since M is the “square ” of a wide band process , if the

bandwidth (8W) goes to infinity and the energy per unit BW does not

go to zero , (2.1) becomes meaning less. In practice , we are interested

in both Ew
~ 

and in an equation for an approximation to wt 
- Ew

~
for wide BW noise.

A commonly used “engineering ” heuristic argument says that since

M (~) is wide band and w(.) is much smoother than M(•), the two

are essentially independent and EM(t)w(t) EM(t)Ew(t) and that Ewt
approximately equals 

~~~~~
, the solution to

(2.2) + (Gi~i+I)i G0S~ .

Of course (2.2) does not give the correct value of Ewt, even as an

approximation , unless the energy per unit BW of the noise is very

small. To see this , simply consider the scalar case where

+ (Gn2+1)w = G 0 ; solve it and take expectat ions.  Since ( 2 . 2 )  is
widely used , we must find an interpretation with respect to which it

makes sense. If (2.2) is an asymptotic result , then it must be satis-

fied by a limit of solutions to (2.1) (or their expectations), as sane parameter
tends to say, ~~. The coninents below are illustrative of the usefulness of the limit
results to which this paper (and references (3] - (7]) are devoted.

- ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~



Let ~2 denote the sum of t h c ’  ci genvalues of ~ . In practice ,
often a roug h estimate of a quant ity proportional to ~

2 (the noise
power) is made , and an automatic gain control mechanism is used to

adjust G , usually decreasing G as the e s t ima te  of ~2 increases.
Such a mechanism is crucial to the proper scaling of (2.1), and we
assume its use. In fact , suppose that for some number K , G = K/a2.
Then (approximatel y, actually, sinc e we ignore the “signal” component
of N) with 6M = M -

(2.3) ‘t i, + [KM/a 2 
+ K ( 6 M ) / a 2 + 11w = G 0s* .

As the BW of n ( • )  tends to ~~~, the e f f e c ts of K(6M)w/o2 become

neg ligable (a consequence of the type of argument in [71 , Sections 6

and 7 , under reasonable assumptions on n(s)) and the limit is pre-

cisely the solution of (2.2). For concreteness , we consider the case

a r i s i ng from (1.1) where n
~ 

= y(t,/E
2
)/C and y ( . )  is a sta tionary

bounded process and C lie . Set = Ey*yt 6MC 
= [y*(tiC

2)y~(t/c2) -
Write oNt as c5M~ E 6M~ / c 2 and use for  6M~ .

Now , define 6w = w - i~ and u C 
= a6w . Then

+ [ J(f~/~
y 2 

+ I ] u C 
+ K(6M

C
/aZ)u C 

+ K ( S M C
/o)w = 0 ,

( 2 . 4 )  
.
~~~~ i, — C K — C  £ K oM C 

—= - 
~~

- [KM0 
+ flu - 

~~- (6M )u  - ~~~ (—~--)w.

As BW ~~~, the effects of K(6M
C/o2)u disappear and K(6M

C/ a)~
becomes “white noise”, in the sense that there is a standard Wiener
process B(•) such that the limit process has the law of u() in

(2.5) tdu + EKM Q + Ijudt + QdB = 0, u(0) = 0.

Q is obtainable by the method of Theorem 5. We return to this problem
in Section 6, and deal with the convergence problem and a related
stability problem when all quantities are not complex valued , to H
s i m p l i f y the notation.

3. Conver&ence of Finite Dimensional Distributions

In reference (81, lcurtz gave some fairly general methods for
showing convergence to a Markov process of a sequence of non-Markov

processes , either in the sense of weak convergence or in the sense of

convergence of finite dimensional distributions . In this section

and in the next , we briefly describe his method. Later we apply it,
together with an idea in [51 , [63 , to get limit results in a fairly

efficient manner. 0

Sections 3 and 4 are identic al to Sections 2 and 3 of (7)

— ~0 - -- ~ -- -- ~—~~~~~~~~~ --  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Let (c~,P,~~) denote a prob th il ity space , ~ a nondecr eas ing
sequence of sub a-al gebras of ~~~~, let .~~~~~ denote the space of pro-

gessively measurable real valued processes k(.) on (0,~ ), adapted

to and such that sup EIk(t )t < ~~~~. Let k
C and k be in

9’ . Define the limit “p- u rn” by p- u rn k
C 

= k iff sup sup E$k
C(t)I <

C>~ t
and EIk

C(t) - k(t)J -
~ 0 fo r  each t a s C -

~ 0. I~~r each s > 0,

define the operator Y(s): 9’-’~ 9’ by ~~(s)k = funct~~n in 9’ whose

value at t is the random variable fl k(t+s). There is a version

w h i c h  is progressively measurable (18] , Appendix) and we always assume

that this is the one which is used. The 91s), s > 0 , are  a semi -
group of linear operators on 9’. Let 9’ denote the subspace

of p-ri ght continuous functions. If the limit p -lim E
~g 
(Y(s)k-k)J

s-~0

and exists and is in ~~~~~~, we call it Ak and say that k c

The operators 5(s) and A are analogous to the semigroup and weak

infinitesimal operator of a Markov process. Among the properties to

be used later is ((8], equation (1.9))

rS
(3.la) 5(s)k - k = j y(i)Akdt , k c 9(A),

0
or , equivalentl y,

-

~~ 5
(3.lb) E5 

k(t+s) - k (t) = E~~ Ak(t+t)dt , for each t > 0.

If , for some process Z C ( .) , 
~~ ~~

(
~~~‘ 

s < t ) ,  we may write

and AC for 9j , f(t) and A , resp.
The following Theorem (a specialization of [8), Theorem 3.11)

is our main tool for dealing with (1.1) or (1.5). 
0

Iheoremil,,. Let Z C
(..) = xt(.), ~~C

(.)  C > 0 , denote a sequence of
Rr+r valued right continuous processes , x() a (R’-valued) Markov

L process with seinigroup T~ mapp ing C0 into C0 and wh ich is
strong ly continuous (sup norm) on C0. For some x > 0 and dense set

D in C9, le t Range (X
~A I D) be dense in C0 (sup norm,

A = infinitesimal operator of x(.)). Suppose that, for each k C D,
there is a sequence (k C} of progressively measurable functions
adapted to ($~~} and such tha t

(3.2) p_lim , (kE - k(x C(.))) 0

— — — •~~0
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(3.3) p~lim [Ak C 
- Ak (x C(.))) = 0.

Then, if x C
(O) -

~~ x(0) weakly, the finite dimensional distributions

of x
C(.) converge to those of x (-).

Equations (3.2) and (3.3) are equivalent to (the limits are
taken for each t as C -

~ 0)

(3.2’) sup EIk
C(t) - k(xC

(t))f < ~~~, E~, k
C(t) - k(x C

(t)fl 0
C ,t

(3.3’) sup E IA C kC (t)  - A k ( x C
(tfl( < 1~~~ 1(~~~) - Ak(x C

(tfll -
~~ 0.

C ,t

4. Tightness

Let ~~ (.),x
C(.) denote the functions in the model (1.5). Let

deno te ~~~~ 
u < t)  and wri te E~ for E~~~.

t
Again , we describe results from (8) .  Le t DrE0 ,~) denote the

space of Rr valued functions on 1O ,’~°) which are right continuous

on (0 ,~ ) and have left hand limits on (0,°’). Note that xC() c 
0

D~
’[o,~) w.p.l . Suppose that the finite dimensional distributions of

x C(.) converge to those of a process x(•), where x(.) has paths in

D1’E0 ,°°) w.p.l. Then , as noted in [8], bottom of page 628, {x
C ( .) }

is tight in DT [O,00) if {k(xC(.))} is tight in D[0,~ ) for each

k C e. (
~ is used there , but it can be replaced by or by any

set of functions dense in ~ in the sup norm.) It follows from [8], 4
Theorem 4.20 , that (k(x C(.))} is tight in D[0,w) if x~ -~~ x0
weakly and if, for each real I > 0 , there is a random var iable
such that

(4.1) E
~v~

(6) > E~ min~
l ,(k(x

~+~
) - k(x~))

2},

for all 0 < t < T, 0 < u < 6 < 1, and

( 4 . 2 )  l im TI~ E ~~~~~~~ 
= 0.

6÷0 £+0

in (8), p. 629, Kur tz sugge sts a me thod of getting the

This method is developed in Theorem 2 and is used in the sequel. The

be low wi ll be obta ined in the sam e mann er as we will obtain the
kE needed in Theorem 1. We have ( 11k M • suplk(x)l)

x

0 0 - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •r~~~~~
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( 4 . 3) E~~(k (x~~~ ) - k(x~ )J 2 
< 2J I k i I l~~

k(X
~+u

) - k(x~)I

£ 2  C 2 ~+ I~ tk (xtfu ) - k (x
~
)I .

Theorem 2. Let k C ~~ and let there be a sequence {kC} in 9’
where (kE)i C 9(AC), i = 1 ,2, and such that, for each real I > 0

there is a random variable N such that

(4.4) sup lk
C
(t) - k(x~ )J -

~~ 0 in prob ab i l i ty as C -
~ 0,

t<T

(4.5) sup IA
C (k E

(t))h
f < M~ , i = 1 ,2, u r n  sUp P{M6 > N ) = 0.

tCT - N C

Then {k(xC(.))} is tight in D[0 ,°°).

Proof: We need only show tightness of {k6(~)} on [0 ,T] . By (3.1)

E~ (k t(t+u))i - (k C(t))i = 
10

C (t÷T idt ,

from which (4.3) and (4.5) yield that there is a 
~~~~~~ 

satisfying
(4.1) and (4.2) for {kC(.)). Then (4 . 4) and t i gh tne s s  of {k E ( . ) )
imp ly tightness of fk(x (~ ) ) } .  Q.....D.

5. Convergence of the Sequence {xC (.)) of (1.5)

We follow the general line of development in [71, using the
ideas in Sections 3 and 4.

Assumptions:

(Al) Let f(x,s) = f(x)s. The functions g(~ ,~ ) and f ( )  t
are continuous, the first (second, resp .) function having
continuous first (second, resp .) mixed partial x-
derivatives.

(A2) There is a constant K such that

If(x)I + Ig(x ,s)I < K(1+Ixl).

(A3) (s~ } is bounded (uniformly in c) and stationary and

Es~~~~0.

Define .9~ = ~~~~~ j < I), 9~ • 
~~~~~ 

s < t) and let E~
and E~ denote the corresponding conditiona l expectation operators. t

- 
0~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ —~ —~~~~~~~~~~~ --~~- -
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Throughout the sequel , K denotes a constant , whose value may change
from usage to usage. Also in (A4h ,c), we let s~ denote an arbitrary
scalar component of itself . It seems to be most convenient to use

(A4) in I ts given form . Other forms , more closel y r e sembl ing  strong
m i x i n g  can be given . Strong m i x i n g  would  imply  the second par t of
(A4a) and (A4b ,d). But some thing like (A4c) would still be required ,

because we need the C dependence there.

(A4) a . There arc ~~~~. and &~ > 0 such tha t ~ ~1/2 < and
3 .1~~~

C 2  .C C
El s i  < KE , ft~

s
~ +~~I ~~ Ki.i

3
. 0

b. IE~
s
~+j

s
~+j+k 

- Es
~ +j s~ +j#k I < K~i~

c. E”2JE~
s
~+j

s
~+j+k 

- ES
~~+J

S
~~+

.
+k I

2 
~

d. ~ ~~~~~~~~~~ - Eg (x~s~+~ fl <

3

E ~~~~~~~~~~~ - Iig~ (x~s~+p ( < ~~~~ .

Let the expectation of the sums in (d) go to zero as C + 0, H

un i formly on bounded x-sets.

Define the operators A~ and A~ by (k( ) C e 2 )
(5.1) A~k(x) = E J f I (x ,~~ )[k,~(x)f(x , +~)]xdu/C

2

= E I f~ (x,s
C(t/C))(k~(x)f(x,s

C(u+t/c))]xdu/ c
0

and

= u r n  
~ J A~ 1. k(x)ds.

N-”~ 0 ~ —

Let i = [t/c) , which equals the nearest integer to tIE which is not

i - larger than t/c. Then .

(5.2) 4k(x) = ~ E Ef’(x,s~
)(k

~
(x)f(x ,s

~
)J
~

~ 
~~~~  

-
~~~~:



Note that X
C 

is A~ hu t wi th (~.[t/C1 ~~ C - t)/c rep laced by 1/2.

(AS) The sum in (5.2) convcrges uniformly in £ for each x

and k(.). h ence also uniformly in x , since
f ( x ,s) = f(x)s). There are matrix and vector valued
functions a(.) and h ( . ) , rcsp ., such that

(~~
C (x )  = Eg( x , s~ ))

( 5 . 3 )  Pk( x) + k~ (x)j
C (x) h ’ ( x ) k ~~

(x)

+ 
~ ~~~~~~~~~~~~~~~~~~~~ 

A k ( x )

uniforml y in x for each k. 0

“2 . .(Afl) A is the restriction to C of the strong infinitesima l
• operator of a strong Markov diffusion process (with no

fini te escape t i m e) with seinigroup T
~~
, which  ma ps C0

in to  C 0 and is stron gly con t inuous on C0.
0 

(A7) For some real A > 0, the set (X-A)C 2 is dense in C0.

~~ no te tha t i t is enoug h to use in (AS) and (A6).

Remark on bounding the coefficients. In our case (since

f(x ,s) = f(x)s) there is a matrix o(.) such that a(.) =

Suppose that b ,a, are locally Lipschitz and that x(.), the diffusion
w i t h  c o e f f i c i e n t s  u ( ) , b ( . ) ,  has no finite escape time w .p .1. Then

x ( ’ )  has a representation as a solution to an It~ equation , and can

be defined on Wiener process space. We say that xN(.) is an

N-truncation of x (~) if it s drift and diffu sion coef f icien t s
are bounded and equal b(.),o(.) in SN = {x: )x ) < N ) ,

and are obtained by a bounding of g and f. The process xN(.) can
be defined on the same Wiener process space on which x() is defined ,
and then equals x() up until the first exit time from SN (which

-‘ w.p.1 as N -‘- ~) .  I f  for each N , Theorem 2 (and, of course ,
(A6)-(A7)) is true for some N-truncation , then it is true as stated.

Remark on the conditions. (A6) and (Al) are required for the
use of (the semigroup approximation) Theorem 1. (A7) is equivalent
to the strong infinitesima l operator of the I of (A6) being the
closure of the operator A of (5.3) acting on C (or on any set
sense in e2 in the norm H k11 2 sup(lk(x)I + k

~
(x)I ‘.

- ~~~~~~~~~~~~ •~~ ~~Th-~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~



Thi s condition does not seem to he very restrictive . As noted above
it is o f t e n  only necessary to v e r i f y  it for  some xN(.) truncation
for each N. If the coefficients are bounded and uniformly twice
con t inuousl y d i f f e r e n t i a b l e , then ([111, Chapter  8.4) T maps C2

into C~ an d is s t rong ly  con t inuous on C w i t h  respec t to norm
I l k I l  - We can then replace C by C in (AS), (A6) and in

Theorem 1 and consider  as a c t i n g  on C0 ra ther  than on C 0 .
In Theorem 3, we apply Theorem 1 to get convergence of finite

dimensional distributions of {xC(.)} to those of x(.) on an
arbitrary time interval 0,1. Tig htness (Theorem 4) is a little

harder to get , owing to the fact that f(x,~~ )//E is not necessarily
uniformly bounded as C -

~ 0 (see remarks in Section 1), and some
additional conditions must be used.

Theorem 3. Under (Al) to (A7), the f i n i te dimensional  dis tr ibu t ions

• of x
C(.) converge to those of x() as £ -

~
- 0, where x(.) is the

diffus ion wi th infinitesimal operator A (on C2 functions) and

initial condition x0

Remark. Give k C ~~, the main work in using Theorem 1 is in finding

a suitable k
C 

and proving (3.2)-(3.3). Following a basic idea in

[5), [61 , we will define functions k~ and k~ su ch th a t k E 
= k + 0

k~ + k~ does the job. The k~ are constructed to guarantee that
¶ p-lim q = 0 and A C k

C 
= Ak plus terms going ‘to zero in the sense

of p-lim .

Proof: Part 1. Let k C E~~. Then it is easy to check that k~()
c 9(A~) and that (write x = x~ , ~ = 

~~~
) -

= k~(x)(g (x,~) + f(x,~ )/c) .

Part 2. We now define k~ (t) k
~

(x t,t) in such a way that
~~E C ~~C C
A k 1(t) cancels the k~(x)f(x,~ )/ c term of A k0(t). Define

(5.4) k~ (x ,t) = J E ~k~(x)(f(x,~~ +5)/c)ds.

By (A3) , (A4) , (i (t/ c ) ) 
.I :::~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--



Th u s , k~ is bounded. By (A4a) , E l i  k ,~( x ) f ( x ~ s~ +~ ) I  < K /~. Thus

(5.5) is bounded above by KC 114 ~ ~~/2 and , hence , p- lim k~ = 0.
C -~

Note tha t k1(x,t) is differentiable with respect to x. In
fact ,

(5.6) k
~~~

(x,t) =

which is well defined for each C . We can readil y show that

sup E l E~ k1 (x~ +6,~~ +6) 
- k~(x~ ,~~ )I/6 is bounded as 6 + 0 and that

(5.7) p-lim [E~k~ (x~~6,t+ 6) - k~ (x~~,t)J/6

= p-lim [E~k~ (x~~6,t+6) - k~ (x~ ,t+6)]/6

+ p-lim [E~k~(x~ ,t+6) -

= (k
~~~

(x
~
,t))’*~ 

- k~ (x~)f(x~ ,~~ )/6

k1~~
(x
~
,t) +

where = g(x~ ,~~) + f(x~ ,~~ )/C . Thus k~ C ~~(A C
) and A Ck~ is

given by (5.7). The second term on the r.h.s. of (5.7) cancels a

- 
term of ACk

C Also the term in 
~~ ~

(x
~
,t)’*

~ 
which arises from the

g term goes to zero in the p-lim sense as C -
~ 0.

Part 3. Now k~ is to be defined such that A
C
k~(t) equals

Ak(x~~ minus the dominant term in k
~ ,~

(x
~
,t)’i

~ 
plus terms which go

to zero in the p-u rn sense as C -. 0. Set k2(t) k2(xt,t) where

(5.8) k~(x,t) = ids{iE~ 

f’(x,~~~5) [ f(x ,
~~+5+~)] - A~45k(x~

+ ~ E~k~(x)(g(x ,~~+5) - r(x))ds = ~~(x,t) + ~~(x , t).

The last term of k~ goes to zero uniformly •in x, as t • 0;
also (with x = X

C
) it is in ~~(A

t) and A~k~(x,t) k (x)jt (x)
plus terms going to zero in the p-u rn sense minus 1c~~(x)g(x , F t ) .  This

• last term cancels a term of AEk~(t). We need to deal only with the
first term of (5.8). Recall that A~~5k(x) is just the expected
value of the intefral with respect to u of the coefficient of E~ .

• ~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~ ~~- 
—

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~~
‘-

~~~
--- - - -

‘

~~~~~~~ 
---



Owing to the integration with respect to s in (5.8) A~~ 5 can
(and will) be replaced by X

c 
wi th  little re quir ed change in the sub-

sequent arguments. Next , we show that is w e l l - d e f i n e d  and
p —u rn k~ = 0. To simp lif y the notation , assume the scalar case and let
f .  repre sent  e i t h e r  f ( x , s . )  or f~

(x
~ s~ ) .  Al l  bounds and con-

vcrgences are uniform on bounded x-sets.

We have Ci = [ t / C ] )

• 
Ik

C (t) I < K ~ IE~ f~ .f~ . - E f~ .f~ . I .2 - . i 1+3 i-’- j-’- k i +j  i+j+k
• 1 ,3

By (A4a , b) the 1,J
th term is bounded above by K p .  and a lso

1/2 -~

by KiJ k, hence by K(IJ jPk) which implies that the sum is bounded .

Also , by (A4a,c), p- lim i4 = 0. It can also be readily shown that
C ~ (AC ) .  We need only show that ACk~ = minus  argunent of the outer

integral of k~ (at s = 0) p lus k~ ~
(x
~
,t)’

~~ 
and that

p- lim k
~~~

(x
~
,t)’k

~ 
= 0. If this is true , then we have AC (k(x~) +

k~~( t )  + k~~(t ) )  = Ak( x~ ) plus terms whos e p-lin t is zero , and the proof

w i l l  b e comple ted .  That  A C
k~ has the asserted form is not hard to

show , and we only show tha t  p - u rn (x ) ‘k z~~ 
= 0.

To get  k2 ~‘ 
we can differentiate under the integral in (5.8).

With the u s e of the above f~ notation , k
~~~

(t)’x
~ 

is bounded by a
f ini te (the number not depending on c) sum of terms of the type

= ~~~~ - ‘

(5 . 9) Q
C 

= I f ~~/ c l  .~~~. I E ~~
f

~~+j f
~~+j + k  

- Ef
~+j

f
~+j+k I .

By (A4) , E”2If~ I
2 

< K~~
’2 and ~~~~~~~~~~~~~~~~~ < KEE

~ If~+j t1~
i k ~

KC / 
~~ 

This and (A4c) implies that

E112 E
CfC fE - Eft f t 2 

< Kc +6)~’2 ~ ~
i i+j i+j+k i+j i+j+k - j k~

Thu s, by (A4) again, EIQ C
I < Kc6”2 ; hence, p-u rn (

~~
)‘k

~~~ 
0. Q.E.D.

Tightness. To prove tightness (which together with the con-

vergence of finite dimensional distributions yields, weak convergence

of {x t(.)) to x(.), we make use of Theorem 2. Both (4.4) and (4.5)

must be shown for each k C ~~ . They do not follow from (Al)-(A7).

In order to simpl ify matters we use (AS) also.

I— 
— 

— 
~

- — —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



(A8) Let s~ = 
~~~~ 

where is a matrix (bounded uniformly

in c) and (w~ , i > 0) is a Markov chain for each t .

There are matrices such tha t £ ~~~~ < and where
J 

-~ C C  C Cthe convergence is uniform in c , and E .w.4. = p .w. .
C . . . ‘C’~~!We use E1 to denote conditioning on (w., j < i ) .  Let

EIw~ I~ < Kc~
”2 and IE~w~+ .(w~+ .)’ 

- Fw~ + .(w~ + .)’l <

- 

P~ (Iw 1 I + KC).

Remark .  Cond i t ion  (A8) is quite realistic. For example , let w~~1 =

Bw1~ + 6~ , where the eigenvalucs of B are inside the unit circle and
for each C , {B

~
} is a sequence of truncated independent identically

- 

distributed Gaussian random variab 1~ s with covariance bounded above
by KC . Then (we use scalar case for illustration) EE(w~~.)

2 =

B2~ (w~)
2 

+ ~~~(var 6
c)82k and (E~ (w~÷~)

2 
- E(w~~.)

2
~ < I~ I~i(w ~) 2 +

~~(var B,~)I BI 2k where var < K C .

Theorem 4. Under (Al) to (A8), tx~()
’ is tight on D1 (O ,°°) and

converges weakly to the diffusion x(.) of Theorem 3 as C + 0.

Proof. Tightness of {k(xC(.))} on D(0,T) needs to be shown , for
arbitrary I and k c ~~~~~~~

. Define k~ as in Theorem 3. Since k~ ,
i = 0,1 ,2, are bounded , and kE c ~~(A

C) ,  then (kt)2 C ~ (A
C) and

= 2kcACkt. By Theorem 2 and the estimates of Theorem 3 we
only need to show that for each 6 > 0 (i = 1,2) PisupI k~ (t)I? 6)

2 0
-c t<T

as c -
~~ 0 and that (k2 x)l*

t is bounded on [0 ,TJ by some random
variable M

~
(T) such that sup P{M

~
(T) > A) ~~

. 0 as A -~~ ~ . (All the

other components of ACkE ha~e this property by the estimates in

Theorem 3.)
By (A8) (using scalar case notation where convenient)

(5.10) suplkf (t)I < K sup £ IE
CsE I < K sup (w~ I

t<T - j< [T/c) jz0 ~ ~‘ ‘~~~ 
- ic~[T/E1 

1

(5.11) suç l4 (t ) I  < K 
i < ( T ~ c] ~~~~~~~~~~~~~~~~~~~~ 

- Es
~+J s~+J.k I

< K sup ,
C

1
2 

+ ICc .
- i< (T / C J

4



Similarl y 
C

( 5 . 1 2 )  suçlk~~~
(t) ’~~ l ~ K ~~~~~~~~~~~~~~~~~~~~~~~ 

- E s i +j s i +j + k t

1 w. ! -

< K  sup •~~ - + K l w
~ l .

• 

- 

i< [T/cJ 
C 0 1

By the comments in the first paragraph and the bounds (5.lO)-(5.l2) ,

we need only show that

(5.13) ~ C ~ sup I w ~ l > AC ”3) -
~~ 0

i< [T/cJ ~ -

as c -
~~ 0 for each positive A. Bounding (5.13) and using Chebychev ’s

• inequality yields

C 7
(I/C) lJl p E I w j  K 1/6P C 

~ £ P{Iw~ I > Ac ‘1 < (!. + 2) 7 ~~~~ 
< 

C

i= 0 A c ’ A

from which we get tha t (5.10), (5.11) go to zero as desired and that

(5.12) is bounded as desired. In fact (5.12) goes to zero in

probability as C -
~ 0. Q.E.D.

6. Convergence and Stability for the Adaptive Antenna Problem
C

We use the same notation as in Section 2. The symbols E and

Et refer to expectation conditioned on y(s), s < t/c and y(s),
-
~~ s < t , resp. Write = (KH0÷I)/t . As in Section 2, y(.) isa (not

necessarily piecewise constant) stationary right continuous and bounded
process. The quantities are not complex valued here , to simplify the
notation. In general , deal with the real and imaginary parts
separately. Assume

(Bi) I l E t 6M t+s Ids is bounded uniformly in t , W .

Define the operator A~ (on C2 functions) by (Wt is not randnm )

• - -  A~k (u)  ~ ~~ J i ~~
E M

~kuu (u) 6
~ s

i
~t
dS.

• (B2) Jd s  J IE t6Mt+56M~+s+y 
- E6Ü~+5

6M
~+5+~ fdv

is bounded un i f o rmly  in t ,w . 
-

— ~W ’ U ~~ ’ !  “ “ T
• - - ~~~• •

“ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘,  ‘



(B3 )  f l i t he r let E~ be the expectation conditioned on

fl 4~( y (s)  , s < t + p) ( a n d  s i m i l a r l y  fo r  E~ ) or else
• 

0 
p> 0

* E~ y~~~5 ~II~1 
Et+p Yt+s~~~~ ~ 

EtY t+s y’~+t ~~~~
also _ for 3rd order terms) in probability as P 4 0, for each

positive t ,s ,t .

Both (81) and (B2) follow from the strong mixing condition (1.3).

Define the operator 
~~ 

by A
~
k(u) = -k~ ( u ) K 0u + A~k(u) -k~ (u )K 0u +

~ ~~~~~~~~~~~~~~~~~~~ . Set (p..) = P = QQ ’ .
1 ,_I 3

JJ iie~,_ 5. Under (Bl)-(B3), (u C(.)) converges weakly in D” [O ,co)

to the diffusion (2.5) with generator A t and initial condition

u(0) = 0.

The proof follows the lines of that of Theorem 3 quite closely,
except , of course , tha t the integrals cannot necessarily be written

as sums. Also , due to the scaling and to the fact that y() is

bounded , tightness is more easily proved than In Section S. In

part icular , k1 
-
~~ 0 as C 0 (i 1 ,2) and so does (k2 ~

)‘u , all

un i formly on (0 ,~ ). Theorem S is also a consequence of the results

in [41 (under their mixing condition (3.1) on y(.), which imp lies

(BJ)-(B2)), (61 (for Markovian y(.)) or (71 . We will give only the

relevant k7.
Let k c ~~ . Then k~ ( t ) k~ (u~ ,t), where we use

k~ (u ,t) = 4 J 
E~k~ (u)[61~~+5u + 

6l
~t+~ 

~t]~~

k2 (u ,t) - ~~ f;
ds{J0~~

E~ 
~~~~~~~~~ k

~~
(u) 

6f
~t+S 

~~dv - A~k(u)}.

We have ACkC = Atk plus terms which to to zero (un i formly in w ,t)

as C -
~~ 0.

An extension of Theorem 5. Theorem 5 is not ‘very satisfactory,

since we are usually interested in u
C ( .)  f or large times , and would

like some estimates of how close the tails ([T,~ ) sections , for
lar ge T) are to the tail of (2.5). The weak convergence resul t of
Theorem 5 does not give this to us. In Theorem 6, we show that

- —• I
- — 0~~ ~~ ‘ 

~ _~~~~~~~-_ — ~~~~~~~~~~~~ ~~— — ~~~—



(6 . 1)  SUp nj u C ( t  1 2 is bounded
- 

t>0 ,C small

(6.2) fu
C (T+.) -r > 0, C small) is ti gh t in 1)r [ 0)

F r om these , we get the more satisfactor y conclusion of Theorem 6. As
n ot ed af ter the proof , the me thod is not sharp enoug h to ge t good
estimates for how small C must be in order for (6.l)-(6.2) to hold.

JJ~eprcjn_ 6. Assume (Bl)-(B3). Then (6.1) and ( 6 . 2)  h o l d  and as  c -
~ 0,

~ in any way at all , ~i
C
(T+.) 

- 

converges weakl y to the stationary
solution to (2.5). Also , if u (1+~ ) converges weakly to a process
u

C ( . )  as I -
~~ ~ , then ~ C ( .)  conver ges w e a k l y  to the sta t iona~~

solution of (2.5). (Indeed, it can be easily shown from (6.1) and the
stationarity of y(.) that (u t(T+.), T > 0) ‘is tight for each
small C .)

Proof: Only a sketch will be given. The stability idea is essentially
that in [61 , except that it is used in a slightl y different way and
that Kurtz ’s results must be used since y(.) is not assumed to be
Markovian. Let P be a positive definite symme tric matrix such that
u ’Pu k(u) is a Liapunov function for ~i = -K 0u , and C = -(K~P+PK0)
is negative definite. In the proofs of Theorems ’ 3, 4, 5, it was re-
quired that k(s) C E~~ . Our k(.) here is not in ~~, but it makes
little difference in the proofs. This is because y(.) is bounded and

rI
because we could use the form I E (.) for the k~ and get estimates

• i

(6.1) for t < I, and which do not depend on I. In order to simplify
the argument , we ignore the fact tha t k (S) t e~.

C — — — CWe have (use u = u~ , W = w~ , 6M = 6M t)

Atk(u) = -u ’Cu - u ’ [(6!~ ) ‘P + p(~ l
C
)Ju - Iu ’P + 

~~~
‘ (

~~
—) ‘Pul .

• C A C E
Following the method of Theorem 4, def ine k1 such tha t A k 1 cancels
all the terms of Atk (u) , except for the first. Set k~ (t) k~ (u~,t)
where

(6.3) k~(u,t) 4iE u’((6I
~ +s)’P + ulds

- ~~~~~~~~~~~~~~~~ w’(t~~~~)’Pu3ds.

________________________  — 0~~~ • 0 
~~~~~~~~ ~~~~~~~~~ ~~~ t - - .

~~~~~~~~~ 
0



Note that , by the chang e of variable s/C 2 
-
~~

(6 .4) k 1 (u ,t) = ~
Kc 2

f r
C 

(ÔM(s+t/c 2) ‘P + PÔM (s+t/c 2)Ju ds

- 

~~~~~

- f E~~[u ’P 6 M ( s + t / C 2 )~~ + w ’~SM ( s- 4 - t / C 2 ) ’P u ] d s .
0

Now ,

(6.5) Rck~ (u ,t) = -(last two terms of A
Ck(u ) )  + (k~ ,u(u,t))

,I:iC .

. C - . A C C
The function k2(t) is chosen in a way such tha t A k2(t)

cancels the part of the last term of (6.5) which  i s not 0(c) (to
see which terms are 0(C) or 0(1), change variables s/C 2 -~~ s).

Ihus  set

(6.6) k~(t) = 
t2:2 f dsf tE

~~~
(6M

~ +5
) ’P 6  +s+v~ t 

- Ct)dv

where

C~ = (2K 2/t 2) I 0 6M& ’P6 Ms ,
~t d5

Now ,

ACk
C
(t) = - (dominant part of last term in (6.5) + Ct.

By a change of variables s/c2 -
~~ s, v/c

2 -‘- v and (B 2) , it can be
verified that k~ = 0(C 2 ) .

Combining the foregoing together with (Bl)-(B2) yields , for
k = k + k 1 + k2, u = u~,

Atkt(t) = -u ’Cu + C~ +

k(u)  < kt (u ,t) +

where B
~
(.) and ‘

~~
(
~

) are both the sum of quadra tic forms in u
• and b ili near forms in (u ,

~ t) and with coefficients that are bounded
uniformly in c,w ,-t.

By (3.1) and the above estima tes , there a re posi t ive real C,U
and C~~ such tha t for c <



S S
(6.7) I~k ( u~ ) < Ek C (u~ ) - 

~ J I k ( u~ )dv + f c  dv + C I B ~ (u ,~ 5)I .

S i n c e  u~ = 0, (6.7) implies (6.1).

Given (6.1), it is not hard to show , via the method of Section 4
(see also Section 5 of [71) that (6.2) holds. Also , the limit of any
weakl y convergent sequence (as C -+ 0) must converge to some solution
of (2.5).

We only need to show that as C -
~~ 0, 1 ~ , any subsequence

converges to the stationary solution of (2.5). Fix T~ > 0 and take
a c o n v e r g e n t  su bs equence  of {uC (T+.)) (C  -

~~ 0, 1 ce). Take a further
subsequence of the subse quence , such that the [‘1’ -T 1,~~) sec t ions are
we ak l y  convergen t a ls o . Le t ~

i’(~ ) and ii(~~) denote the weak limits

~~ Dr [Q~~) of the ET ,~ ) and [T~T1,m) sections , resp. Then ~
( )

i s j u s t the  [Tl,~
) section of 

~
( . ) .  In  p a r t i c u l a r , ii(0) =

Since {u C
(t)} is tight and T~ arbitrary and ~i = -K 0u asymptoti-

cally stable , we get that any limit as I -* ~ , C -
~ 0 must be the

s t a t i o n a r y  so lu t i on  of ( 2 . 5 ) . Q.E.D.

Remark. Theorem 6 is preferable to Theorem 5, but since C
0 

depends
on the maximum magnitude of y(.), we do not get a good estimate of
the stability region. Some other approach seems to be needed for
this. We have tried to combine the above ideas with the ideas in -

stochastic stability for linear systems with coefficient variations
(such as those based on Gronwall’s Lemma [lSJ- .(17)) but without much
success so far.
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